Candidate surname	Other names

Centre Number Candidate Number

Pearson Edexcel Level 1/Level 2 GCSE (9-1)

Time 1 hour 30 minutes \quad| $\begin{array}{l}\text { Paper } \\ \text { reference }\end{array}$ | A / \square |
| :--- | :--- |

Mathematics
PAPER 1 (Non-Calculator)
Higher Tier

You must have: Ruler graduated in centimetres and millimetres,
Total Marks protractor, pair of compasses, pen, HB pencil, eraser.
Tracing paper may be used.

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided - there may be more space than you need.
- You must show all your working.

- Diagrams are NOT accurately drawn, unless otherwise indicated.
- Calculators may not be used.

Information

- The total mark for this paper is 80
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Answer ALL questions.

Write your answers in the spaces provided. You must write down all the stages in your working.

1
(a) Work out 4.66×4.9
\qquad
(b) Work out $77.22 \div 1.8$
$2 \mathscr{E}=\{$ odd numbers between 0 and 21$\}$
$A=\{7,13,19,21\}$
$B=\{3,7,15,19\}$
Complete the Venn diagram for this information.

(Total for Question 2 is $\mathbf{3}$ marks)

3 Work out $3 \frac{2}{5}-1 \frac{2}{3}$
Give your answer as a mixed number.

4 At the end of 2017
the value of Tom's car was $£ 25000$ the value of Jim's car was $£ 16000$

At the end of 2020
the value of Tom's car had decreased by 30% the value of Jim's car had increased by 10%

At the end of 2020, whose car had the greater value?
You must show how you get your answer.

5 Jane, Katie and Lucy grow tomatoes.

$$
\begin{array}{ccc}
\begin{array}{c}
\text { number of } \\
\text { tomatoes Jane has }
\end{array} & : \begin{array}{c}
: \text { number of } \\
\text { tomatoes Katie has }
\end{array} & : \begin{array}{c}
\text { number of } \\
\text { tomatoes Lucy has }
\end{array}
\end{array}=3: 8: 14
$$

Lucy has 18 more tomatoes than Katie.
Lucy has more tomatoes than Jane.
How many more?

6 The diagram shows a prism.

The cross section of the prism is a right-angled triangle.
The base of the triangle has length 6 cm
The prism has length 20 cm
The prism has volume $600 \mathrm{~cm}^{3}$
Work out the height of the prism.
\qquad cm

7 The diagram shows a cube with edges of length $2 a \mathrm{~cm}$ and a sphere of radius 6 cm .

The surface area of the cube is equal to the surface area of the sphere.
Show that $a=\sqrt{k \pi}$ where k is an integer.

8 Solve $x^{2}=3 x+28$
(a) Write down the value of 9^{0}
(b) Find the value of $5 \times 5^{5} \times 5^{-5}$
(c) Find the value of 3^{-4}
\qquad
(d) Find the value of $64^{\frac{1}{3}}$
\qquad

10 The diagram shows a shape made from 6 identical squares.

The total area of the shape is $9576 \mathrm{~cm}^{2}$
(a) Find an estimate for the length of one side of each square.

Give your answer correct to the nearest whole number.
(b) Is your answer to part (a) an underestimate or an overestimate?

You must give a reason for your answer.
\qquad
\qquad
\qquad

11 The diagram shows two rectangles, A and B.

All measurements are in centimetres.
The area of rectangle \mathbf{A} is equal to the area of rectangle \mathbf{B}.
Find an expression for y in terms of x.

12 The cumulative frequency table gives information about the lengths, in cm , of 40 snakes.

Length (l cm)	Cumulative Frequency
$0<l \leq 5$	4
$0<l \leq 10$	7
$0<l \leq 15$	13
$0<l \leq 20$	30
$0<l \leq 25$	38
$0<l \leq 30$	40

(a) On the grid, draw a cumulative frequency graph for this information.

(2)
(b) Use the graph to find an estimate for the median length of the snakes.
cm

13 Tony is trying to change 0.362 to a fraction.
Here is the start of his method.

$$
\begin{aligned}
& x=0 . \dot{3} 6 \dot{2} \\
& 100 x=36.2 \dot{2} 6 \dot{2} \\
& 100 x-x=36.2 \dot{3} 6 \dot{2}-0 . \dot{3} 6 \dot{2}
\end{aligned}
$$

Evaluate Tony's method so far.
\qquad
\qquad
\qquad

14 Here is a shape with all its measurements in metres.

The area of the shape is $S \mathrm{~m}^{2}$
Show that $S=11 x^{2}+21 x-14$

15 Show that $\frac{5 x+2}{3 x}+\frac{1}{2}$ can be written in the form $\frac{a x+b}{c x}$ where a, b and c are integers.

16 There are only 4 orange sweets and 6 yellow sweets in a box.
Hannah takes at random 3 sweets from the box.
Work out the probability that she takes exactly one orange sweet.

17 On the grid show, by shading, the region that satisfies all of these inequalities.

$$
3 y+3<x \quad x<4 \quad y<6-2 x
$$

Label the region \mathbf{R}.

(Total for Question 17 is $\mathbf{3}$ marks)

18 Here is trapezium $A B C D$.

The area of the trapezium is $70 \mathrm{~cm}^{2}$
the length of $A B$: the length of $C D=3: 4$
Find the length of $A B$.
cm

19 Show that $\frac{8+\sqrt{18}}{6+\sqrt{2}}$ can be written in the form $\frac{a+b \sqrt{2}}{c}$ where a, b and c are integers. Give your answer in its simplest form.

20 The diagram shows the graph of $x^{2}+y^{2}=30.25$

Use the graph to find estimates for the solutions of the simultaneous equations

$$
\begin{aligned}
& x^{2}+y^{2}=30.25 \\
& y-3 x=2
\end{aligned}
$$

21 The functions f and g are such that

$$
\mathrm{f}(x)=2 x^{2}+1 \text { for } x>0 \quad \text { and } \quad \mathrm{g}(x)=\frac{9}{x} \text { for } x>0
$$

(a) Work out gf(2)

The function h is such that $\mathrm{h}=(\mathrm{fg})^{-1}$
(b) Find $\mathrm{h}(x)$

22 Find the coordinates of the turning point on the curve with equation $y=50+20 x-2 x^{2}$ You must show all your working.
\qquad
(Total for Question 22 is 4 marks)

